API Reference¶
Complete API documentation for Tracelet's public interfaces.
Quick Navigation¶
Core API¶
- Main Interface - Primary entry points (
start_logging
,get_active_experiment
,stop_logging
) - Experiment - Main experiment management class
- Settings - Configuration and settings management
Backends¶
- MLflow - MLflow integration
- ClearML - ClearML integration
- Weights & Biases - W&B integration
- AIM - AIM integration
Frameworks¶
Data Collection¶
- Git Collector - Git repository information
- System Metrics - System performance metrics
Plugin System¶
- Core Plugins - Plugin architecture and interfaces
- Data Flow Management - Orchestrator and data flow
Usage Examples¶
Basic Usage¶
import tracelet
# Start experiment tracking
tracelet.start_logging(
exp_name="my_experiment",
project="my_project",
backend="mlflow"
)
# Get active experiment and log metrics
exp = tracelet.get_active_experiment()
exp.log_metric("accuracy", 0.95, iteration=100)
exp.log_params({"lr": 0.001, "batch_size": 32})
# Stop tracking
tracelet.stop_logging()
Multi-Backend Usage¶
import tracelet
# Track to multiple backends simultaneously
tracelet.start_logging(
exp_name="multi_backend_experiment",
project="comparison_study",
backend=["mlflow", "wandb"] # List of backends
)