Quick Start¶
Get up and running with Tracelet in under 5 minutes!
1. Installation¶
bash
pip install tracelet mlflow
bash
uv add tracelet mlflow
2. Basic Usage¶
Here's a complete example using PyTorch with TensorBoard:
import tracelet
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, TensorDataset
# 1. Start experiment tracking
tracelet.start_logging(
exp_name="my_first_experiment",
project="tracelet_demo",
backend="mlflow" # or "clearml", "wandb", "aim"
)
# 2. Create a simple model and data
model = nn.Linear(10, 1)
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.MSELoss()
# Synthetic data
X = torch.randn(100, 10)
y = torch.randn(100, 1)
dataset = TensorDataset(X, y)
dataloader = DataLoader(dataset, batch_size=16)
# 3. Use TensorBoard as normal - metrics are automatically captured!
writer = SummaryWriter()
for epoch in range(50):
total_loss = 0
for batch_idx, (data, target) in enumerate(dataloader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
total_loss += loss.item()
# Log batch metrics - automatically sent to MLflow!
writer.add_scalar('Loss/batch', loss.item(), epoch * len(dataloader) + batch_idx)
# Log epoch metrics
avg_loss = total_loss / len(dataloader)
writer.add_scalar('Loss/epoch', avg_loss, epoch)
print(f"Epoch {epoch:2d}: Loss = {avg_loss:.4f}")
# 4. Log additional experiment info
exp = tracelet.get_active_experiment()
exp.log_params({
"learning_rate": 0.01,
"batch_size": 16,
"epochs": 50,
"model": "linear"
})
# 5. Clean up
writer.close()
tracelet.stop_logging()
print("✅ Experiment completed! Check your MLflow UI to see the results.")
3. View Results¶
MLflow¶
ClearML¶
Visit app.clear.ml or your ClearML server
Weights & Biases¶
Visit wandb.ai
AIM¶
What Just Happened?¶
- Automatic Capture: Your existing
SummaryWriter.add_scalar()
calls were automatically intercepted - Zero Code Changes: No modifications to your existing TensorBoard code
- Multi-Backend: Same code works with MLflow, ClearML, W&B, or AIM
- Rich Logging: Scalars, parameters, and system info automatically tracked
Next Steps¶
- Configuration Guide - Customize your setup
- Backend Guides - Deep dive into each backend
- PyTorch Integration - Advanced PyTorch features
- Examples - More comprehensive examples
Pro Tip
Try the multi-backend example to compare different tracking platforms with the same experiment!